Deep Learning/Pytorch
[Pytorch] Dataset 정의
파이토치에서는 DataLoader 클래스를 통해 데이터를 편리하게 불러올 수 있다. (ex : 특정 batch size만큼씩 데이터 불러오기, shuffle, 미리 정의한 순서대로 데이터 불러오기 등) 이를 위해서는 Dataset 클래스로 데이터를 사전 정의해야 한다. import torch from torch.utils.data import Dataset 테스트를 위해 간단한 tensor 데이터를 정의하였다. x = [[0,0,0], [0,0,1], [0,1,0], [1,0,0], [0,1,1], [1,1,0], [1,0,1], [1,1,1]] y = [0, 1, 2, 3, 4, 5, 6, 7] x = torch.Tensor(x).float() y = torch.Tensor(y).long() 이제 Da..
[Pytorch] ImageFolder로 쉽게 Image Dataset 만들기
이미지를 Input으로 하는 네트워크를 구축하고자 할 때 유용하게 사용할 수 있는 torchvision의 Image Folder 클래스를 소개한다. ImageFolder를 이용하면 이미지들이 각 class에 해당하는 폴더에 각각 나누어져 있을 때 이를 dataset 형태로 쉽게 불러올 수 있다. 예시를 위해 kaggle에서 제공하는 Medical MNIST 데이터를 살펴보겠다. Medical MNIST는 다음과 같은 2차원 medical 이미지들이 총 6개의 class로 나뉘어져 있는 형태이다. 각 class의 이미지들은 위와 같이 class 이름으로 된 폴더에 나뉘어져 있다. 이를 ImageFolder를 이용해 데이터셋 형태로 만들어 보자. 우선 ImageFolder의 파라미터를 살펴보면 다음과 같다...